Efficient Synthesis of Chiral *ansa*-Metallocenes by Amine Elimination. Synthesis, Structure, and Reactivity of *rac*-(EBI)Zr(NMe₂)₂

Gary M. Diamond,[†] Richard F. Jordan,^{*,†} and Jeffrey L. Petersen[‡]

Contribution from the Departments of Chemistry, University of Iowa, Iowa City, Iowa 52242, and West Virginia University, Morgantown, West Virginia 26506

Received February 14, 1996[⊗]

Abstract: The amine elimination reaction of $Zr(NMe_2)_4$ (2) and (EBI)H₂ (1,2-bis(3-indenyl)ethane, 3) in toluene at 100 °C affords pure *rac*-(EBI)Zr(NMe₂)₂ (*rac*-4, EBI = ethylene-1,2-bis(1-indenyl)) in 68% isolated yield. This reaction proceeds via the rapidly formed mono-indenyl intermediate (η^5 -C₉H₆CH₂CH₂C₉H₇)Zr(NMe₂)₃ (6) which undergoes reversible intermolecular amine elimination with a second equivalent of 2 to give the binuclear species (μ - η^5 , η^5 -EBI){Zr(NMe₂)₃}₂ (5, *rac* and *meso* isomers) or reversible intramolecular amine elimination to give either *rac*-4 or *meso*-4. The kinetic metallocene product is a 1/1 mixture of *rac*-4 and *meso*-4, the thermodynamic product is *rac*-4, and the *meso*-4 to *rac*-4 isomerization is catalyzed by the NMe₂H co-product. The *rac*-4/*meso*-4 product ratio can be controlled by adjusting the rate of NMe₂H removal from the reaction vessel and the steady state concentration of amine in the reaction mixture. The molecular structure of *rac*-4 has been determined by X-ray crystallography. *rac*-4 is converted to *rac*-(EBI)ZrCl₂ (*rac*-1) in high yield by reaction with NMe₂H·HCl (92% isolated) or Me₃SiCl (quantitative). The syntheses of 2, *rac*-4, and *rac*-1 can be combined in a "one pot" synthesis of *rac*-4 with AlMe₃ affords *rac*-(EBI)ZrMe₂ (*rac*-7) in 90% isolated yield. *rac*-4 can be used directly as a catalyst precursor for the isospecific polymerization of propylene.

Introduction

Chiral group 4 ansa-metallocenes are the basis of a new class of stereoselective olefin polymerization catalysts,¹ and have been employed as stereoselective catalysts or reagents for a wide variety of other reactions,² including olefin hydrogenation,^{3a,b} epoxidation, 3c,d,e isomerization, 3f hydrooligomerization, 3g,h and cyclopolymerization reactions, 3i,j olefin-pyridine coupling, 3k imine hydrogenation,^{31,m,n} enamine hydrogenation,³⁰ Diels-Alder reactions,^{3p,q} allylic amine synthesis,^{3r} allylic alcohol synthesis,3s,t carbomagnesation reactions,3u kinetic resolution of pyrans,^{3v} hydrosilylation of ketones,^{3w,x} and dehydrogenative phenylsilane oligomerization.^{3y} However, practical application of ansa-metallocene catalysts and reagents is hindered by the fact that current ansa-metallocene syntheses, which are based on salt elimination reactions between MCl_x compounds and biscyclopentadienyl dianion reagents, are inefficient. Here we describe in detail a new approach to ansa-metallocene synthesis based on amine elimination chemistry.

Among the first chiral *ansa*-metallocenes to be prepared were the ethylene-bridged, bis-indenyl complexes (EBI)MCl₂ (M = Ti, Zr, Hf; EBI = ethylene-1,2-bis(1-indenyl)) and their hydrogenated derivatives (EBTHI)MCl₂ (EBTHI = ethylene-1,2-bis(1-tetrahydroindenyl)).^{4–7} These prototypical *ansa*-met-

(3) (a) Waymouth, R.; Pino, P. J. Am. Chem. Soc. 1990, 112, 4911. (b) Broene, R. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 12569. (c) Colletti, S. L.; Halterman, R. L. Tetrahedron Lett. 1992, 33, 1005. (d) Halterman, R. L.; Ramsey, T. M. Organometallics **1993**, *12*, 2879. (e) Hitchcock, S. R.; Situ, J. J.; Covel, J. A.; Olmstead, M. M.; Nantz, M. H. Organometallics 1995, 14, 3732. (f) Chen, Z.; Halterman, R. L. J. Am. Chem. Soc. 1992, 114, 2276. (g) Pino, P.; Cioni, P.; Wei, J. J. Am. Chem. Soc. 1987, 109, 6189. (h) Pino, P.; Galimberti, M.; Prada, P.; Consiglio, G. Makromol. Chem. 1990, 191,1677. (i) Coates; G. W.; Waymouth, R. M. J. Am. Chem. Soc. 1993, 115, 91. (j) Coates, G. W.; Waymouth, R. M. J. Mol. Catal. 1992, 76, 189. (k) Rodewald, S.; Jordan, R. F. J. Am. Chem. Soc. 1994, 116, 4491. (1) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1992, 114, 7562. (m) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8952. (n) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11703. (o) Lee, N. E.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5985. (p) Hong, Y.; Kuntz, B. A.; Collins, S. Organometallics 1993, 12, 964. (q) Jaquith, J. B.; Gaun, J.; Wang, S.; Collins, S. Organometallics 1995, 14, 1079. (r) Grossmann, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 2321. (s) Collins, S.; Kuntz, B. A.; Hong, Y. J. Org. Chem. 1989, 54, 4154. (t) Kuntz, B. A.; Ramachandran, R.; Taylor, N. J.; Guan, J.; Collins, S. J. Organomet. Chem. 1995, 497, 133. (u) Morken, J. P.; Didiuk, M. T.; Hoveyda, A. H. J. Am. Chem. Soc. 1993, 115, 6997. (v) Morken, J. P.; Didiuk, M. T.; Visser, M. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1994, 116, 3213. (w) Halterman, R. L.; Ramsey, T. M.; Chen, Z. J. Org. Chem. 1994, 59, 2642. (x) Carter, M. B.; Schiott, B.; Guiterrez, A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11667. (y) Banovetz, J. P.; Stein, K. M.; Waymouth, R. M. Organometallics 1991, 10, 3430.

(4) (a) Wild, F. R. W. P.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1982, 232, 233. (b) Wild, F. R. W. P.; Wasiucionek, M.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1985, 288, 63. (5) Ewen, J. A.; Haspeslagh, L.; Atwood, J. L.; Zhang, H. J. Am. Chem. Soc. 1987, 109, 6544.

(6) (a) Collins, S.; Kuntz, B. A.; Taylor, N. J.; Ward, D. G. *J. Organomet. Chem.* **1988**, *342*, 21; (b) Lee, I. M.; Gauthier, W. J.; Ball. J. M.; Iyengar, B.; Collins, S. *Organometallics* **1992**, *11*, 2115.

(7) (a) Grossman, R. B.; Doyle, R. A.; Buchwald, S. L. Organometallics **1991**, *10*, 1501. (b) Buchwald, S. L.; Grossman, R. B. U. S. Patent 5 004 820, **1991**.

[†] University of Iowa.

[‡] West Virginia University.

[®] Abstract published in Advance ACS Abstracts, August 1, 1996.

^{(1) (}a) Thayer, A. M. Chem. Eng. News 1995, 73(37), 15. (b) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (c) Sinclair, K. B.; Wilson, R. B. *Chem. Ind.* **1994**, 857. (d) Möhring, P. C.; Coville, N. J. *J. Organomet. Chem.* **1994**, 479, 1. (e) Stehling, U.; Diebold, J.; Kirsten, R.; Roll, W.; Brintzinger, H. H.; Jungling, S.; Mulhaupt, R.; Langhauser, F. Organometallics 1994, 13, 964. (f) Spaleck, W.; Kuber, F.; Winter, A.; Rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E. F. Organometallics 1994, 13, 954. (g) Horton, A. D. Trends Polym. Sci. 1994, 2, 158. (h) Farina, M. Trends Polym. Sci. 1994, 2, 80. (i) Bochmann, M. Nachr. Chem. Tech. Lab. 1993, 41, 1220. (j) Kaminsky, W.; Engehausen, R.; Zoumis, K.; Spaleck, W.; Rohrmann, J. Makromol. Chem. 1992, 193, 1643. (k) Spaleck, W.; Antberg, M.; Rohrmann, J.; Winter, A.; Bachmann, B.; Kiprof, P.; Behm, J.; Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1347. (1) Ewen, J. A.; Elder, M. J.; Jones, R. L.; Haspeslagh, L.; Atwood, J. L.; Bott, S. G.; Robinson, K. Makromol. Chem., Macromol. Symp. 1991, 48/ 49, 253. (m) Spaleck, W.; Antberg, M.; Dolle, V.; Klein, R.; Rohrmann, J.; Winter, A. New J. Chem. 1990, 14, 499.

⁽²⁾ Halterman, R. L. Chem. Rev. 1992, 92, 965.

allocenes were the first to be used for olefin polymerization catalysis,⁸ and are still widely used for comparison purposes in olefin polymerization studies,^{1f,9} as models in mechanistic and theoretical studies,10 and as stereoselective catalysts in synthetic organic reactions.3

rac-(EBI)ZrCl₂ (rac-1) was first prepared by Brintzinger from ZrCl₄(THF)₂ and (EBI)Li₂, in 35% yield.^{4b} Collins proposed that the low yield of this reaction was due mainly to the formation of polymeric byproducts which had to be removed in subsequent washing steps, and improved the yield of rac-1 to 52% by using high dilution and slow mixing of THF solutions of ZrCl₄(THF)₂ and (EBI)Li₂.⁶ Buchwald employed (EBI)K₂ and obtained 1 in 70% yield but as a 2/1 mixture of rac and meso diastereomers.7 However, the Collins and Buchwald syntheses both require a washing step with aqueous HCl, which, if not performed rapidly and on a completely dried reaction mixture, can result in partial hydrolysis of (EBI)ZrCl2 and varying purity of the final product. Piemontesi recently reported an alternative workup which avoids the acid wash, employs a CH₂Cl₂ Soxhlet extraction step, and affords pure rac-1 in 40% yield.¹¹ Van Beek has reported that the reaction of (EBI)Li₂ with ZrCl₄ in dimethoxyethane affords rac-1 in 65% yield.¹² These syntheses of rac-1 are among the most refined and efficient ansa-metallocene preparations yet developed. In general, current syntheses of chiral C₂-symmetric ansa-metallocenes by salt elimination reactions produce the desired rac isomer in 10-30% yield, 1e,f,k,13 and separation of the chiral rac isomer from the undesired, achiral meso isomer is not always possible.9,14

Amine elimination reactions of group 4 metal dialkylamide compounds with protic reagents have been used to prepare a wide variety of organometallic and inorganic complexes.¹⁵ In 1968, Lappert showed that the reaction of $Zr(NMe_2)_4$ (2) with excess cyclopentadiene (CpH) in refluxing benzene affords Cp2-Zr(NMe₂)₂ and 2 equiv of NMe₂H.¹⁶ The analogous reaction with indene (IndH) gave only the mono-indenyl compound

(8) (a) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355. (b) Kaminsky, W.; Kulper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507.

(9) (a) Mise, T.; Miya, S.; Yamazaki, H Chem. Lett. 1989, 1853. (b) Roll, W.; Brintzinger, H. H.; Rieger, B.; Zolk, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 279

(10) (a) Corradini, P.; Guerra, G.; Vacatello, M.; Villani, V. Gazz. Chim. *Ital.* **1988**, *118*, 173. (b) Cavallo, L.; Guerra, G.; Oliva, L.; Vacatello, M.; Corradini, P. *Polym. Commun.* **1989**, *30*, 16. (c) Krauledat, H.; Brintzinger, H. H. Angew. Chem., Int. Ed. Engl. 1990, 29, 1412. (d) Castonguay, L. A.; Rappe, A. K. J. Am. Chem. Soc. 1992, 114, 5832. (e) Hart, J. R.; Rappe, A. K. J. Am. Chem. Soc. 1993, 115, 6159. (f) Busico, V.; Cipullo, R. J. Am. Chem. Soc. 1994, 116, 9329. (g) Busico, V.; Cipullo, R. J. Organomet. Chem. 1995. 497. 113.

(11) Piemontesi, F.; Camurati, I.; Resconi, L.; Balboni, D.; Sironi, A.; Moret, M.; Ziegler, R.; Piccolrovazzi, N. Organometallics 1995, 14, 1256.

(12) Van Beek, J. A. M. European Patent Appl. 0 530 908 A1, 1992. (13) (a) Chacon, S. T.; Coughlin, E. B.; Henling, L. M.; Bercaw, J. E.

J. Organomet. Chem. 1995, 497, 171. (b) Kaminsky, W.; Rabe, O.; Schauwienold, A. M.; Schupfner, G. U.; Hanss, J.; Kopf, J. J. Organomet. Chem. 1995, 497, 181.

(14) (a) Wiesenfeldt, H.; Reinmuth, A.; Barsties, E.; Evertz, K.; Brintzinger, H. H. J. Organomet. Chem. 1989, 369, 359. (b) Collins, S.; Hong, Y.; Taylor, N. J. Organometallics 1990, 9, 2695. (c) Erickson, M. S.; Fronczek, F. R.; McLaughlin, M. L. J. Organomet. Chem. 1991, 415, 75. (d) Collins, S.; Hong, Y.; Ramachandran, R.; Taylor, N. J. Organometallics 1991, 10, 2349.

(15) (a) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. Metal and Metalloid Amides; Ellis Horwood; Chichester, West Sussex, 1980. (b) Bradley, D. C. Adv. Inorg. Chem. Radiochem. 1972, 15, 259. (c) Bowen, D. E.; Jordan, R. F.; Rogers, R. D. Organometallics **1995**, *14*, 3630. (d) Black, D. G.; Swenson, D. C.; Jordan, R. F.; Rogers, R. D. Organometallics 1995, 14, 3539. (e) Duan, Z.; Verkade, J. G. Inorg. Chem. 1995, 34, 4311. (f) Galakhov, M.; Martin. A.; Mena. M.; Yelamos, C. J. Organomet. Chem. 1995, 496, 217. (g) Lemke, F. R., Szalda, D. J.; Bullock, R. M. J. Am. Chem. Soc. 1991, 113, 8466. (h) Jenkins, A. D.; Lappert, M. F.; Srivastava, A. C. J. Organomet. Chem. 1970, 23, 165.

(Ind)Zr(NMe₂)₃. Lappert attributed this difference in reactivity to the greater steric bulk of IndH compared with CpH; however, the lower acidity of IndH versus CpH may also play a role (pK_a) in Me₂SO: IndH = 20.1, CpH = 18.0).¹⁷ Lappert also found that the reaction of Ti(NMe₂)₄ with excess CpH gave only CpTi-(NMe₂)₃, and ascribed the lack of formation of Cp₂Ti(NMe₂)₂ to the greater steric crowding around Ti versus Zr (effective ionic radii in 8-coordinate environment: Ti⁴⁺ 0.74 Å, Zr⁴⁺ 0.84 Å;¹⁸ M-NMe₂ bond lengths: Ti 1.91-1.92 Å¹⁹ and Zr 2.03-2.11 Å).^{15,20}

Amine elimination reactions of cyclopentadiene reagents and actinide metal M(NR₂)₄ compounds have been described by several authors.²¹ Takats reported that $Cp_2U(NR_2)_2$ (R = Et, Ph) could be prepared in high yield via amine elimination, though for R = Et, the product contained about 3% Cp₃U(NEt₂), and attempts to prepare $Cp_2U(NMe_2)_2$ invariably gave mixtures of Cp₂U(NMe₂)₂ and Cp₃U(NMe₂).^{21a} Subsequently, Zanella reported that CpH reacts with $M(NEt_2)_4$ (M = U, Th) to yield mixtures of CpM(NEt₂)₃, Cp₂M(NEt₂)₂, Cp₃M(NEt₂), and Cp₄M, depending on the reaction conditions and stoichiometry.^{21b} The tendency to form $Cp_3M(NR_2)$ and Cp_4M complexes reflects in part the larger size and decreased steric crowding of actinide versus group 4 metal M(NR₂)₄ complexes (effective ionic radii in 8-coordinate environment: Th⁴⁺ 1.05 Å and U⁴⁺ 1.00 Å;¹⁸ M-NR₂ (M = Th, U) bond lengths 2.25-2.35 Å).²²

Recently, Herrmann reported the synthesis of the achiral Me₂-Si-bridged metallocene Me₂Si(η^{5} -C₅H₄)₂Zr(NEt₂)₂ via the reaction of Me₂Si(C₅H₅)₂ and Zr(NEt₂)₄.²³ Also, Collins has reported that the ansa-metallocene Me₂Si(η^{5} -C₅H₄)(η^{5} -C₉H₆)ZrCl₂ may be prepared by the reaction of $Me_2Si(C_5H_5)(C_9H_7)$ and Zr-(NMe₂)₄, followed by protonolysis of the bis-amide intermediate using anhydrous HCl.²⁴ Bridged cyclopentadienylamide derivatives of the type { η^5 , η^1 -C₅H₄(CH₂)₃NMe}M(NMe₂)₂ (M = Zr, Hf)²⁵ and $\{\eta^5, \eta^1$ -Cp'SiMe₂NR' $\}$ M(NR₂)₂ (Cp' = C₅H₄, C₉H₆; R' = Ph, ^tBu; M = Ti, Zr, Hf; R = Me, Et)²⁶ have also been prepared via amine elimination reactions.

Group 4 metal amide complexes are useful precursors to a wide range of derivatives.¹⁵ For example, reactions of M(NR₂)₄

(16) (a) Chandra, G.; Lappert, M. F. J. Chem. Soc. A 1968, 1940. See also: (b) Bürger, H.; Dämmgen, U. J. Organomet. Chem. 1975, 101, 295. (c) Dämmgen, U.; Bürger, H. J. Organomet. Chem. 1975, 101, 307.

(17) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1983, 105, 6188. (18) Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751.

(19) (a) Haaland, A.; Rypdal, K.; Volden, H. V.; Andersen, R. A. J. Chem. Soc., Dalton Trans. **1992**, 891. (b) Martin, A.; Mena, M.; Yelamos, C.; Serrano, R.; Raithby, P. R. J. Organomet. Chem. 1994, 467, 79. (c) Duan, Z.; Verkade, J. G. Inorg. Chem. 1995, 34, 4311.

(20) (a) Sartain, W. J.; Huffman, J. C.; Lundquist. E. G.; Streib, W. G.; Caulton, K. G. J. Mol. Catal. 1989, 56, 20. (b) Chisholm, M. H.; Hammond, C. E.; Huffman, J. C. Polyhedron 1988, 7, 2515. (c) Hagen, K.; Holwill, C. J.; Rice, D. A.; Runnacles, J. D. Inorg. Chem. 1988, 27, 2032. (d) Nugent, W. A.; Harlow, R. L. Inorg. Chem. 1979, 18, 2030. (e) Bynum, R. V.; Hunter, W. E.; Rogers, R. D.; Atwood, J. L. Inorg. Chem. 1980, 19, 2368. (f) Pupi, R. M.; Coalter, J. N.; Petersen, J. L. J. Organomet. Chem. 1995, 497, 17. (g) Bai, Y.; Roesky, H. W.; Noltemeyer, M.; Witt, M. Chem. Ber. 1992, 125, 825.

(21) (a) Arduini, A. L.; Edelstein, N. M.; Jamerson, J. D.; Reynolds, J. G.; Schmid, K.; Takats, J. Inorg. Chem. 1981, 20, 2470. (b) Ossola, F.; Rossetto, G.; Zanella, P.; Paolucci, G.; Fischer, R. D. J. Organomet. Chem. 1986, 309, 55. (c) Dormond, A.; Duval-Huet, C.; Tirouflet, J. J. Organomet. Chem. 1981, 210, 83. (d) Jamerson, J. D.; Takats, J. J. Organomet. Chem. 1974, 78, C23.

(22) (a) Barnhart, D. M.; Clark, D. L.; Grumbine, S. K.; Watkin, J. G. Inorg. Chem. 1995, 34, 1695. (b) Reynolds, J. G.; Zalkin, A.; Templeton, D. H.; Edelstein, N. M. Inorg. Chem. 1977, 16, 1090.

(23) Herrmann, W. A.; Morawietz, M. J. A.; Priermeier, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 1946.

(24) Gauthier, W. J.; Corrigan, J. F.; Taylor, N. J.; Collins S. Macromolecules 1995, 28, 3771.

(25) Hughes, A. K.; Meetsma, A.; Teuben, J. H. Organometallics 1993, 12. 1936.

(26) Herrmann, W. A.; Morawietz, M. J. A. J. Organomet. Chem. 1994, 482.169.

complexes with other amines $(NR'_{2}H)$ provide routes to either $M(NR'_{2})_{4}$ or mixed-amide $M(NR_{2})_{4-x}(NR'_{2})_{x}$ complexes, and amine elimination reactions with alcohols, thiols, and acidic hydrocarbons provide routes to alkoxide, sulfide, and organometallic derivatives.^{15,16a,27} Group 4 metal amides may be converted to halide derivatives via protonolysis (anhydrous HX or NR₂H·HX)^{24,25} or amide—halide exchange reactions (e.g. reaction with M'Cl₄, M' = Ti, Zr, Hf, Si, Ge, Sn)^{28,29} and may be converted to alkyl derivatives using AlR₃ reagents.³⁰

Since the most widely used and highly developed chiral ansametallocenes contain bridged bis-indenyl ligands, we decided to study the reactions of bridged bis-indenes and group 4 metal dialkylamides as a possible route to chiral ansa-metallocenes. Our working hypothesis was that if the indenes were linked, the chelate effect should favor the formation of ansa-metallocene bis-amide complexes over mono-indenyl products.²³⁻²⁶ Additionally, it was felt that control of the reaction conditions and/ or manipulation of the amide steric properties might provide a means of controlling the stereochemistry. Finally, it was anticipated that the ansa-metallocene bis-amide products could be converted to dihalide and other derivatives for catalytic applications. Here we describe in detail the synthesis of rac-(EBI) ZrX_2 (X = NMe₂, Cl, Me) complexes by amine elimination reactions.³¹ Subsequent papers in this series will discuss the extension of this approach to different metals, amides,³² bridging groups,³³ and Cp substituents.³⁴

Results and Discussion

Improved Synthesis of Zr(NMe₂)₄ (2). Zr(NMe₂)₄ was first prepared by Bradley in 1959, via the reaction of ZrCl₄ and LiNMe₂ in Et₂O. Extraction of the crude product into benzene followed by sublimation gave pure Zr(NMe₂)₄ in 59% yield.²⁷ Chisholm showed that Zr(NMe₂)₄ and LiNMe₂ react irreversibly in THF to give Li₂(THF)₂Zr(NMe₂)₆, which is non-volatile and does not release Zr(NMe₂)₄ upon heating under vacuum, and proposed that the formation of Li₂(ether)₂Zr(NMe₂)₆ species might account for the modest yield of Zr(NMe₂)₄.^{20b}

The use of toluene rather than THF or Et₂O as the solvent for the synthesis of $Zr(NMe_2)_4$ avoids the formation of Li₂(ether)₂Zr(NMe₂)₆ and results in an improved yield. Thus, addition of solid ZrCl₄ to a suspension of LiNMe₂ in toluene at room temperature, followed by stirring at room temperature (18 h), removal of solvent under reduced pressure, and sublimation, reproducibly yields pure Zr(NMe₂)₄ (83% isolated). Zr(NMe₂)₄ is monomeric in the gas phase,^{20c} adopts an amide-bridged dimeric structure (Me₂N)₃Zr(μ -NMe₂)₂Zr(NMe₂)₃ in the solid state, and exists in a monomer/dimer equilibrium in solution.^{20b,35}

Synthesis of *rac*-(EBI)Zr(NMe₂)₂ (*rac*-4). The reaction of Zr(NMe₂)₄ (2) and (EBI)H₂ (1,2-bis(3-indenyl)ethane, 3)⁶ in toluene at 100 °C with N₂ bubbling through the reaction solution to sweep away the volatile NMe₂H co-product (bp 7 °C) affords (EBI)Zr(NMe₂)₂ (4) in 90% NMR yield (eq 1). Thus the chelate

effect does indeed favor the formation of *ansa* bis-indenyl complexes. However, under these conditions **4** is obtained as a 1/1 mixture of *rac* and *meso* diastereomers. Crystallization from toluene affords pure *rac*-**4** as orange/red crystals in 25% yield.

The poor stereoselectivity of the N₂-purged reaction of **2** and **3** was disappointing, but it was soon found that if the N₂ purge is replaced by a static N₂ atmosphere, and the evolved NMe₂H simply allowed to escape from the reaction vessel via an oil bubbler, the stereoselectivity increases dramatically. Under these "open conditions", **4** is obtained in 90% NMR yield in a *rac/meso* ratio of 13/1 (eq 1). Pure *rac*-**4** is isolated in 68% yield by a single crystallization. The use of chlorobenzene or nonane as reaction solvents and crystallization from hexane or nonane gives similar results (90% crude **4**, *rac/meso* ratio of >9/1; pure *rac*-**4** in 55–70% isolated yield after recrystallization).³⁶

Stereocontrol Mechanism in the Synthesis of *rac*-(EBI)-Zr(NMe₂)₂. Several observations provide insight to the mechanism and stereoselectivity of the reaction of 2 and 3.

(i) Exclusion of light from the reaction vessel had no effect upon the *rac/meso* ratio or yield, indicating that the high *rac/meso* ratio is not due to photoisomerization.^{4,14b,d,37}

(ii) Monitoring the reaction of **2** and **3** at 100 °C in toluene (open conditions), by ¹H NMR analysis of aliquots taken from the reaction solution, showed that a binuclear species $(\mu - \eta^5, \eta^5 -$ EBI){Zr(NMe₂)₃}₂ (**5**, *rac* and *meso* isomers) and a monoindenyl species $(\eta^5-C_9H_6CH_2CH_2C_9H_7)Zr(NMe_2)_3$ (**6**) were present at early stages of the reaction (each *ca*. 10 mol % after 2 h). The structures of these species are shown in Scheme 1. Complexes **5** and **6** disappeared completely after *ca*. 15–20 h if NMe₂H was allowed to escape from the system.

Compound **5** was prepared independently by the reaction of 2 equiv of **2** with **3** in toluene at room temperature. ¹H NMR analysis of the crude product showed that **5** was present in 75% yield in a 1/1 isomer ratio. Recrystallization from hexane afforded pure **5** in 19% yield as a yellow crystalline solid in an isomer ratio of 2/1. The ¹H NMR spectrum of **5** contains a singlet in the NMe₂ region and a pair of doublets in the indenyl C₅ region for each isomer, but it is not possible to identify which isomer is *rac* and which is *meso*.

Complex **6** was characterized by ¹H NMR spectroscopy. The reaction of **2** and **3** in C₆D₆ at room temperature for 10 min yields 33% **6**, 2% **5**, NMe₂H, and unreacted **2** and **3**. The ¹H NMR spectrum of **6** contains η^5 -indenyl and NMe₂ resonances, which are very similar to those of **5**, and free C₉H₇ resonances, which are similar to those of **3**.

(iii) The reaction of **2** and **3** in C_6D_6 at room temperature for 30 min (closed system) resulted in complete consumption of **2**

(33) Christopher, J. N.; Diamond, G. M.; Jordan, R. F.; Petersen, J. L. Organometallics, in press.

(34) Diamond, G. M.; Jordan, R. F.; Petersen, J. L. Organometallics, in press.

(35) Bradley, D. C.; Gitlitz, M. H. J. Chem. Soc. A 1969, 980.

(36) The reaction of **2** and **3** in chlorobenzene (125 °C, 17 h, NMe₂H allowed to escape via oil bubbler), followed by solvent removal and recrystallization from hexane, yielded *rac*-**4** as red/orange crystals (70%). The reaction of **2** and **3** in nonane (150 °C, 13 h, NMe₂H allowed to escape via oil bubbler), followed by concentration, filtration, and cooling of the reaction solution to -20 °C, afforded *rac*-**4** in 55% isolated yield.

(37) Rheingold, A. L.; Robinson, N. P.; Whelan, J.; Bosnich, B. Organometallics 1992, 11, 1869.

⁽²⁸⁾ Benzing, E.; Kornicker, W. *Chem. Ber.* **1961**, *94*, 2263.
(29) Wade, S. R.; Willey, G. R. *J. Chem. Soc., Dalton Trans.* **1981**, 1264.
(30) Kim, I.; Jordan, R. F. *Macromolecules* **1996**, *29*, 489.

⁽³¹⁾ Preliminary communication: Diamond, G. M.; Rodewald, S.; Jordan, R. F. Organometallics **1995**, *14*, 5.

^{(32) (}a) Diamond, G. M.; Jordan, R. F.; Petersen, J. L. *Organometallics*, in press. (b) Ross, K. J.; Jordan, R. F.; Swenson, D. C.; Rogers, R. D. Manuscript in preparation.

Scheme 1

and formation of a 2/1/1 mixture of **6**, **5**, and unreacted **3**, along with NMe₂H. After 70 min the **6/5/3** ratio was unchanged. When a further 2 equiv of **3** was added to this mixture, the ratio of **6/5** increased to >4/1 over 3 h. These results indicate that the reaction of **2** and **3** to give **5** and **6** is rapid even at room temperature and that a dynamic equilibrium exists between **3**, **5**, and **6** at room temperature in the presence of NMe₂H. The 2/1/1 equilibrium ratio of **6/5/3** is the statistical ratio, and under normal reaction conditions **5** is always observed in a 1/1*rac/meso* ratio. These observations suggest that for **3**, **6**, and **5**, the indenyl groups of the EBI ligand, though joined by a CH₂CH₂ bridge, react independently with Zr(NMe₂)₄ and NMe₂H; *i.e.* metalation at one indenyl group has little effect upon the reactivity of the other, in terms of both metalation and stereochemistry.

(iv) The reaction of 2 and 3 in toluene at 100 °C for 18 h in a closed vessel, from which the Me₂NH cannot escape, yielded a mixture of 3, 4, 5 and 6. This observation is consistent with the reversibility of the amine elimination reactions noted above, and indicates that for the reaction to go to completion the NMe₂H co-product must be allowed to escape from the system.

(v) Monitoring the reaction of **2** and **3** at 100 °C in toluene (open system) showed that the *rac/meso* ratio of **4** is initially low (2/1 after 2 h) but increases with reaction time (>50/1 after 5 days), indicating that *rac*-**4** is the thermodynamic product. A reaction time of 15 to 20 h is optimum for the preparation of *rac*-**4**, since prolonged heating (>1 day) is accompanied by formation of insoluble products.³⁸

(vi) When N_2 was bubbled through the reaction solution to sweep out the NMe₂H rapidly as it was formed, the reaction of **2** and **3** went to completion, but the final *rac*-4/*meso*-4 ratio was 1/1.

These observations may be rationalized by the mechanism in Scheme 1. In Scheme 1, 2 reacts rapidly with 3 to form the key intermediate 6. Intermediate 6 may undergo reversible *intermolecular* amine elimination with a second equivalent of 2 to give binuclear species 5 or reversible *intramolecular* amine elimination to give either *meso*-4 or *rac*-4. Removal of NMe₂H from the system drives these equilibria to 4. Under fast N₂ purge conditions, the steady state concentration of NMe₂H is

low and the aminolysis of 4 back to 6 is slow. The 1/1 rac-4/meso-4 product ratio obtained under these conditions indicates that the intramolecular amine eliminations of 6 to rac-4 or meso-4 occur at comparable rates, i.e. a 1/1 rac-4/meso-4 mixture is the kinetic product. Thus the formation of rac-4 and meso-4 from intermediate 6 is not stereoselective. However, when the NMe₂H is allowed to escape slowly via an oil bubbler and is thus present in a higher steady state concentration, meso-4 is isomerized to the thermodynamic product rac-4. Thus the stereoselectivity derives from the amine-catalyzed meso-4 to rac-4 isomerization, and the rac-4/meso-4 ratio is sensitive to the rate of NMe₂H removal. The similarity of the rates of conversion of 6 to rac-4 and meso-4 and the fact that rac-4 is thermodynamically favored over meso-4 together imply that the rate of aminolysis of *rac*-4 to 6 is slower than that of *meso-4* to 6.

The key aspects of Scheme 1 were confirmed by studies of the reactions of rac-4 and meso-4 with NMe₂H. Figure 1 shows the results of an experiment in which 2 equiv of NMe₂H were added to a 1/1 mixture of rac-4 and meso-4 in C₆D₆ in a Teflonvalved NMR tube. This figure illustrates the time dependence of the concentrations of rac-4. meso-4. and intermediate species (6 + 5), as determined by NMR integration versus an internal standard. Immediately after the addition of NMe₂H, the Zr distribution was 50% rac-4 and 50% meso-4. After 110 h at 20 °C with the NMR tube closed, the Zr distribution was 50% rac-4, 3% meso-4, and 47% intermediates (6 + 5). Thus NMe₂H reacts selectively with *meso-4* to form 6 and 5. The NMe₂H and C₆D₆ were then removed under vacuum and fresh C_6D_6 was added. The NMR tube was heated to 60 °C and opened under a stream of N2 to allow evolved NMe2H to escape. After 4 h the Zr distribution was 59% rac-4, 11% meso-4, and 30% intermediates (6 + 5). Thus the intermediates (6 + 5)are initially converted to rac-4 and meso-4 at similar rates, supporting the proposal that the conversion of 6 to rac-4 and meso-4 is not stereoselective, and a 1/1 rac/meso mixture is the kinetic product. On continued heating, the increase of rac-4 exceeded that of meso-4, and after 88 h the Zr distribution was 78% rac-4, 18% meso-4, and 4% intermediates (6 + 5). Thus the rac-4/meso-4 ratio increased from 1/1 to approximately 4/1. The total Zr concentration (as measured versus the internal standard) decreased by only 5% over the entire length of the experiment.

In a control experiment, NMe₂H (2 equiv) was added to a solution of pure *rac*-4 in C₆D₆. After 24 h at room temperature (with the NMR tube closed), the Zr distribution was 98% *rac*-4, 2% intermediates (6 + 5). On heating the closed NMR tube at 100 °C, an equilibrium mixture of 72% *rac*-4, 7% *meso*-4, and 21% intermediates (6 + 5) was established in less than 13 h and remained constant for the next 45 h at 100 °C. These results indicate that the reaction of *rac*-4 and NMe₂H to form 6 is very slow at room temperature, but does occur at elevated temperatures. In a second control experiment, a mixture of *rac*-4 and *meso*-4 in C₆D₆ was heated in the absence of NMe₂H. No change in the *rac*-4/*meso*-4 ratio was observed, even on heating to 100 °C for 2 days. Therefore, the amine is required for the interconversion of *rac*-4 and *meso*-4.³⁹

⁽³⁸⁾ One possible mechanism for thermal decomposition of Zr amide complexes is cyclometallation. Labeling studies provide evidence for facile metallation of NMe₂ ligands of Zr(NMe₂)₄ at elevated temperatures. Nugent, W. A.; Ovenall, D. W.; Holmes, S. J. *Organometallics* **1983**, 2, 161.

⁽³⁹⁾ At low NMe₂H concentrations, the rate of conversion of **5** to **6** is slow relative to the rate of conversion of **6** to **4**. For example, in the experiment in Figure 1, the **6**/**5** ratio was 5/1 after 110 h at 20 °C with the NMR tube closed, but was reduced to 2/1 after removal of the NMe₂H and heating at 60 °C for 4 h (open system). Similarly, when the synthesis of **4** (eq 1) was performed using an N₂ purge (*m*-xylene, 100 °C), only **3**, **5**, and **4** (1/1 *rac/meso* ratio) were present after 7 h. The absence of **6** is consistent with the proposal that at low NMe₂H concentrations the conversion of **5** to **6** is significantly slower than conversion of **6** to **4**.

Figure 1. Time dependence of the concentrations of *rac-4, meso-4*, and intermediate species (6 + 5) after addition of 2 equiv of NMe₂H to a 1/1 mixture of *rac-4* and *meso-4* (20 °C, C₆D₆, sealed tube). After 110 h, the volatiles (C₆D₆ and NMe₂H) were removed, fresh C₆D₆ was added, and the tube was opened to allow evolved NMe₂ to escape. The mass balance of total Zr species was >95% over the course of the experiment as assessed by NMR integration versus an internal standard.

Figure 2. Qualitative energy diagram describing the equilibrium between *rac-4*, *meso-4*, 6, and NMe₂H.

A qualitative energy diagram describing the equilibrium between *rac*-4, *meso*-4, 6, and NMe₂H is given in Figure 2. This figure illustrates the conclusions discussed above that (i) the conversion of 6 to *rac*-4 and *meso*-4 occurs at similar rates, (ii) *rac*-4 is the thermodynamic product, and (iii) *meso*-4 is converted to 6 via reaction with NMe₂H more rapidly than is *rac*-4.

The relative stabilities of rac-4 and meso-4 likely reflect steric factors. As illustrated in Scheme 2, meso-4 is destabilized by severe steric crowding which results from the proximity of one of the amide groups to the two 6-membered rings of the EBI ligand. On the other hand, one lateral coordination site of meso-4 is relatively open, so that nucleophilic attack of NMe₂H and subsequent proton transfer leading to **6** are facile. In contrast, due to the presence of one 6-membered EBI ring on each side of the molecule, rac-4 does not suffer from severe steric interactions, but also does not have a sterically open site for NMe₂H attack.

A critical aspect of Scheme 1 is the amine-catalyzed isomerization of *meso*-4 to *rac*-4. Marks has recently reported that the C_1 symmetric complexes Me₂Si(η^5 -C₅Me₄)(η^5 -C₅H₃-3-R*)-LnCH(SiMe₃)₂ and Me₂Si(η^5 -C₅Me₄)(η^5 -C₅H₃-3-R*)LnN(SiMe₃)₂ (Ln = Y, La, Sm, Lu; R* = (+)-neomenthyl or (-)-menthyl) are configurationally stable in toluene at 60 °C, but undergo facile epimerization in the presence of *n*-propylamine.⁴⁰ Marks Scheme 2

proposed that epimerization proceeds via reversible aminolysis of the $Ln-(C_5H_3-3-R^*)$ bond, similar to the mechanism we have proposed for the amine-catalyzed epimerization of **4**.

Structure and Bonding of rac-(EBI)Zr(NMe₂)₂ (rac-4). The molecular structure of rac-4 was determined by single crystal X-ray diffraction (Figure 3, Tables 1–3). rac-4 adopts the expected monomeric, *ansa*-bridged, bent metallocene structure, with approximate C_2 symmetry. The centroid–Zr–centroid (122.2°) and N–Zr–N (99.4°) angles of rac-4 are similar to the centroid–Zr–centroid (125.3°) and Cl–Zr–Cl (99.1°) angles of rac-(EBI)ZrCl₂ (rac-1).¹¹ However, the average Zr–C bond lengths for the indenyl C₅ rings of rac-4 (2.601 and 2.609 Å) are about 0.1 Å longer than for rac-1 (2.514 Å). The large thermal parameters for the bridge carbons C(19) and C(20) suggest that rac-4 may be disordered between the indenyl-forward and indenyl-backward conformations described by Brintzinger.⁴¹ However, attempts to refine the structure of rac-4 using a disordered model were unsuccessful. Note that

^{(40) (}a) Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. **1994**, 116, 10212. (b) Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagné, M. R.; Marks, T. J. J. Am. Chem. Soc. **1994**, 116, 10241.

Figure 3. Molecular structure of rac-(EBI)Zr(NMe₂)₂ (rac-4).

Table 1.rac-(EBI)	Summary of Crysta Zr(NMe ₂) ₂ (<i>rac</i> -4)	llographic Data for
compd		rac-(EBI)Zr(N)

compd	rac-(EBI)Zr(NMe ₂) ₂ · ¹ / ₂ (C ₇ H ₈)
empirical formula	$C_{27.5}H_{32}N_2Zr$
formula wt	481.77
temperature	293(2) K
wavelength	0.71073 Å
crystal system	monoclinic
space group	$P2_1/n$
unit cell dimensions	$a = 23.799(7)$ Å; $\alpha = 90^{\circ}$
	$b = 8.191(1) \text{ Å}; \beta = 96.42(4)^{\circ}$
	$c = 12.367(5) \text{ Å}; \gamma = 90^{\circ}$
volume	2395.7(12) Å ³
Ζ	4
density (calcd)	1.336 g/cm^3
abs coeff	4.75 cm^{-1}
F(000)	1004
crystal size	$0.40 \times 0.40 \times 0.20 \text{ mm}$
θ range for data collection	1.78 to 25.00°
index ranges	$-1 \le h \le 28, -1 \le k \le 9,$
	$-14 \le l \le 14$
reflens collected	5161
independent reflcns	$4179 \ (R_{\rm int} = 0.0376)$
abs correction	empirical (PSI scans)
range of transmission coeff	0.746-0.813
refinement method	full-matrix least-squares on F^2
data/restraints/parameters	3656/4/300
goodness-of-fit on F^2	1.067
final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0892, wR2 = 0.2091
R indices (all data)	R1 = 0.1509, wR2 = 0.3538
largest diff peak and hole	1.740 and −0.617 eÅ ⁻³

rac-1 adopts the indenyl-forward conformation in the solid state but undergoes rapid interconversion between the two conformations in solution.¹¹

As *rac*-**4** is a 16-electron complex, N to Zr π -donation is expected.^{15a,42} As illustrated in Figure 4, the LUMO of a d⁰ Cp₂MX₂ complex is metal-based and localized in the equatorial plane between the Cp ligands.⁴³ For d⁰ Cp₂M(NR₂)X complexes, N to Zr π -donation is maximized with a perpendicular orientation of the NR₂ ligand (i.e. 90° dihedral angle between N–Zr–X and C–N–C planes) and minimized with a parallel orientation (i.e. 0° N–Zr–X/C–N–C dihedral angle).

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\text{\AA}^2 \times 10^3)$ for *rac*-(EBI)Zr(NMe₂)₂ (*rac*-4)

(, are .)				
	x	у	z	$U(eq)^a$
Zr	6462(1)	2211(1)	9814(1)	44(1)
N(1)	5949(4)	1041(11)	8602(7)	60(2)
N(2)	5853(4)	3277(12)	10632(8)	72(3)
C(1)	7380(5)	3691(15)	9506(12)	78(4)
C(2)	7029(7)	4841(15)	9933(10)	83(4)
C(3)	6567(5)	5183(12)	9168(9)	65(3)
C(4)	6623(4)	4318(12)	8217(8)	51(2)
C(5)	6311(5)	4269(17)	7165(9)	75(3)
C(6)	6495(7)	3250(17)	6386(10)	88(5)
C(7)	6974(7)	2298(17)	6621(13)	90(4)
C(8)	7288(6)	2318(15)	7582(14)	89(4)
C(9)	7134(4)	3333(12)	8427(10)	57(3)
C(10)	7350(5)	884(16)	10777(11)	74(4)
C(11)	7073(7)	-353(16)	10125(11)	87(4)
C(12)	6578(6)	-712(12)	10567(10)	69(3)
C(13)	6553(4)	161(12)	11528(9)	53(3)
C(14)	6189(5)	153(17)	12355(11)	80(4)
C(15)	6298(7)	1181(24)	13226(12)	99(5)
C(16)	6734(9)	2163(22)	13305(12)	109(6)
C(17)	7133(6)	2230(15)	12596(11)	85(4)
C(18)	7042(5)	1200(13)	11665(9)	61(3)
C(19)	7922(6)	3089(20)	10028(17)	150(9)
C(20)	7920(6)	1485(21)	10614(16)	135(8)
C(21)	6037(7)	-435(17)	7996(10)	101(5)
C(22)	5427(5)	1896(20)	8144(12)	101(5)
C(23)	5869(8)	4777(18)	11290(12)	118(6)
C(24)	5339(5)	2387(21)	10776(11)	102(5)
C(25)	5079(12)	5878(55)	5006(23)	119(15)
C(26)	5199(12)	4836(55)	4202(21)	145(46)
C(27)	4987(16)	3287(52)	4164(28)	196(37)
C(28)	4655(17)	2779(54)	4930(37)	194(51)
C(29)	4535(15)	3821(61)	5734(31)	155(25)
C(30)	4747(13)	5371(60)	5772(23)	141(36)
C(31)	5338(29)	7622(52)	5075(43)	175(38)

 a U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for rac-(EBI)Zr(NMe₂)₂ (rac-4)^{*a*}

() (2)2	· · ·		
Zr-N(1)	2.061(8)	Zr - N(2)	2.053(9)
Zr-In(1)	2.307	Zr-In(2)	2.319
Zr-C(1)	2.565(11)	Zr-C(10)	2.550(11)
Zr-C(2)	2.537(11)	Zr-C(11)	2.559(11)
Zr-C(3)	2.583(10)	Zr-C(12)	2.573(11)
Zr-C(4)	2.682(10)	Zr-C(13)	2.694(10)
Zr-C(9)	2.639(10)	Zr-C(18)	2.669(10)
N(1) - C(21)	1.45(2)	N(2)-C(23)	1.47(2)
N(1)-C(22)	1.48(2)	N(2)-C(24)	1.45(2)
N(2) - Zr - N(1)	99.4(4)	In(1)-Zr-In(2)	122.2
C(21) - N(1) - C(22)	111.1(10)	C(23) - N(2) - C(24)	108.8(11)
C(21) - N(1) - Zr	131.0(8)	C(23) - N(2) - Zr	130.6(10)
C(22) - N(1) - Zr	117.5(8)	C(24)-N(2)-Zr	119.9(9)

 a In(1) and In(2) are the centroids of the five-membered indenyl rings.

Figure 4. LUMO for d^0 group 4 metal Cp₂MX₂ complexes and limiting geometries for Cp₂M(NR₂)X complexes, with the planar NR₂ ligand (i) perpendicular or (ii) parallel to the metallocene equatorial plane.

The amide groups of *rac*-4 are flat (sum of angles around N(1) is 359.6°, and N(2) is 359.3°), and the Zr-N distances (2.06 Å average) are in the range observed for other unsaturated

⁽⁴¹⁾ Brintzinger, H. H. In *Transition Metals and Organometallics as Catalysts for Olefin Polymerization*; Kaminsky, W., Sinn, H., Eds.; Springer-Verlag: Berlin, 1988; p 249.

^{(42) (}a) Andersen, R. A.; Beach, D. B.; Jolly, W. L. *Inorg. Chem.* 1985, 24, 2741. (b) Bradley, D. C.; Chisholm, M. H. *Acc. Chem. Res.*, 1976, 9, 273. (c) Giolando, D. M.; Kirschbaum, K.; Graves, L. J.; Bolle, U. *Inorg. Chem.* 1992, *31*, 3887.

^{(43) (}a) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729.
(b) Petersen, J. L.; Lichtenberger, D. L.; Fenske, R. F.; Dahl, L. F. J. Am. Chem. Soc. 1975, 97, 6433. (c) Green, J. C.; Green, M. L. H.; Prout, C. K.; J. Chem. Soc., Chem. Commun. 1972, 421.

Zr(IV) amide complexes (2.00-2.17 Å).^{15,20} The dihedral angles between the N–Zr–N plane and the amide C–N–C planes of *rac*-**4** are 34.6° for N(1) and 35.4° for N(2); i.e. the NMe₂ ligands are twisted about 35° from the equatorial plane of the metallocene or about 55° from the optimum orientation for Zr–N π -bonding (see Figure 4). These data indicate that some N to Zr π -donation is present in *rac*-**4**, although the strength of the interaction is difficult to quantify.

It is likely that steric crowding between the EBI ligand framework and the NMe₂ ligands in *rac*-4 prevents the amides from adopting more perpendicular orientations. Close nonbonded H···H contacts are present between H atoms on C(21) and C(11) (2.30 Å) and between H atoms on C(23) and C(2) (2.18 Å). Additionally, the Zr–N(1)–C(21) and Zr–N(2)– C(23) angles are widened from the idealized sp² value (120°) to 131.0° and 130.6°, respectively, and the C(21)–N(1)–C(22) and C(23)–N(2)–C(24) angles are narrowed to 111.1° and 108.8°, respectively.

Previously, Bercaw reported that the H–Hf–N/Me–N–H dihedral angle in Cp*₂Hf(H)(NHMe) is 63°, i.e., the amide ligand is rotated only 27° from the orientation for optimum π -bonding.⁴⁴ Variable-temperature NMR studies establish an upper limit of ca. 10 kcal mol⁻¹ for the strength of the M–N π -interaction in this case.⁴⁵ However, NMR results establish that the amide groups in more crowded Cp*₂Hf(H)(NRR') complexes (NRR' = NHPh, NHTol, NMe₂) adopt more parallel orientations and that Hf–N π -bonding is much weaker in these cases.^{44,46}

It should be noted that both NMe₂ p orbitals in *rac*-4 compete for the same Zr π -acceptor orbital. Hence, at most only partial double bond character is expected for each Zr–N bond. The similarities of the N geometries (both amides are flat), Zr–N bond lengths and N–Zr–N/C–N–C dihedral angles, indicate that the Zr–N π -interaction in *rac*-4 is distributed over both Zr–N bonds. Other d⁰ group 4 metallocene bis-amide complexes (e.g. Cp₂Zr(NC₄H₄)₂)^{20e} and some bis-phosphide complexes (e.g. (C₅H₄Me)₂Zr{P(SiMe₃)₂} exhibit similar structures.^{47,48} However, Cp₂Hf(PR₂)₂ (R = Et, SiMe₃) and Cp₂Zr-{As(SiMe₃)₂} adopt structures with one short (double) M–E bond to a planar, sp²-hybridized ER₂ group and one long (single) M–E bond to a pyramidal, sp³-hybridized ER₂ group.^{49,50}

Reactivity of *rac***-(EBI)Zr(NMe**₂)₂ (*rac***-4).** To fully exploit the amine elimination based metallocene synthesis, we have investigated the synthesis of commonly used *rac*-(EBI)ZrCl₂ (*rac***-1**) and *rac*-(EBI)ZrMe₂ (*rac***-7**) complexes (Scheme 3) and the direct generation of olefin polymerization catalysts from *rac***-4**.

(i) Conversion of *rac*-4 to *rac*-(EBI)ZrCl₂ (*rac*-1). *rac*-4 is cleanly converted to *rac*-1 in high yield (92% isolated) by reaction with 2 equiv of NMe₂H·HCl in CH₂Cl₂ or chlorobenzene (Scheme 3).²⁵ However, this reaction does not work well in hydrocarbon solvents (e.g. toluene) due to the poor solubility

(46) Roddick, D. M.; Fryzuk, M. D.; Seidler, P. F.; Hillhouse, G. L.; Bercaw, J. E. Organometallics **1985**, *4*, 97.

(47) Hey-Hawkins, E. Chem. Rev. 1994, 94, 1661.

(48) Lindenberg, F.; Hey-Hawkins, E. J. Organomet. Chem. 1992, 435, 291.

(49) (a) Baker, R. T.; Whitney, J. F.; Wreford, S. S. Organometallics **1983**, 2, 1049. (b) Weber, L.; Meine, G.; Boese, R.; Augart, N. Organometallics **1987**, 6, 2484.

(50) Hey-Hawkins, E.; Lindenberg, F. Organometallics 1994, 13, 4643.

of NMe₂H•HCl and the difficulty of separating the product *rac*-1 from unreacted NMe₂H•HCl. It would thus be desirable to find a reagent for the chlorination of *rac*-(EBI)Zr(NMe₂)₂ that (i) is soluble in toluene, (ii) reacts more rapidly than NMe₂H•HCl, (iii) selectively cleaves Zr–N rather than Zr–C bonds, and (iv) can be used in excess so that strict stoichiometry control is not required.

Amide-halide exchange reactions of group 4 metal amide complexes have been known for some time.²⁸ In 1981, Willey described a variety of amide-chloride exchange reactions of CpTi(NMe₂)₃ and Cp₂Zr(NMe₂)₂, including the reaction of Cp₂- $Zr(NMe_2)_2$ with M'Cl₄ (M = Si or Ge) to give Cp₂ZrCl₂ and M'Cl₂(NMe₂)₂.²⁹ These precedents prompted us to investigate the use of Me₃SiCl as a chlorinating reagent. The addition of 2 equiv of Me₃SiCl to a red/orange solution of rac-4 in CD₂Cl₂ resulted in an immediate color change to bright yellow and complete conversion to rac-1 and 2 equiv of Me₃-SiNMe₂ (Scheme 3). Subsequent addition of excess Me₃SiCl had no effect, even after 3 days at room temperature. This reaction also proceeds quantitatively in benzene (1 h, room temperature); in this case rac-1 precipitates slowly from solution and again the addition of excess Me₃SiCl has no further effect. Thus Me₃SiCl is an excellent reagent for the conversion of rac-4 to rac-1 in both chlorinated and non-chlorinated solvents.

(ii) "One-Pot" Synthesis of *rac*-1 from ZrCl₄. The reactions described above for the syntheses of Zr(NMe₂)₄ (2), *rac*-4, and *rac*-1 can be combined in a "one-pot" synthesis of *rac*-1, using toluene as a reaction solvent throughout. The course of the reaction was followed quantitatively by ¹H NMR, using C₆-Me₆ as an internal standard. The reaction of ZrCl₄ with 4 equiv of LiNMe₂ in toluene at room temperature gave 2 in 85% yield (based on ZrCl₄). Addition of a toluene solution of (EBI)H₂ (3) and heating to 100 °C for 17 h (open system) gave 4 in 80% yield (based on ZrCl₄) with a *rac/meso* ratio of 11/1. The reaction mixture was filtered to remove LiCl, and a toluene solution of excess Me₃SiCl was added to the clear red filtrate. A yellow solid precipitated immediately. The mixture was stirred at room temperature for 1 h, and pure *rac*-1 was isolated by filtration in 68% overall yield based on ZrCl₄.

(iii) Conversion of *rac*-4 to *rac*-(EBI)ZrMe₂ (*rac*-7). We previously reported the synthesis of *rac*-7 via methylation of *rac*-(EBI)ZrCl₂ (*rac*-1).^{3k} When the methylation was performed using MeLi at room temperature, a 1/1 mixture of *rac*- and *meso*-7 was obtained. Lowering the reaction temperature to -40 °C gave a higher *rac/meso* ratio of 19/1, but the isomerization could never be entirely suppressed, so other methylation reagents were investigated. The reaction of *rac*-1 with AlMe₃ gave the mono-methyl derivative *rac*-(EBI)ZrMeCl in 57% yield. Methylation of *rac*-1 using MeMgBr or MeMgCl gave exclusively *rac*-7 but complete separation of the magnesium

⁽⁴⁴⁾ Hillhouse, G. L.; Bulls, A. R.; Santarsiero, B. D.; Bercaw, J. E. Organometallics 1988, 7, 1309.

⁽⁴⁵⁾ Fehlner^{45a} noted that the Hf–N bond length of 2.027 Å in Cp*₂Hf-(H)(NHMe) is very close to the Ta–C bond length of 2.026 Å for the Ta=CH2 group of the isoelectronic complex Cp2Ta(=CH2)(CH3),^{45b} consistent with significant double bond character for the Hf–NHMe bond. (a) Aradi, A. A.; Fehlner, T. P. *Adv. Organomet. Chem.* **1990**, *30*, 189. (b) Schrock, R. R.; Guggenberger, L. J. *J. Am. Chem. Soc.* **1975**, *97*, 6578.

salts from the product was not achieved.⁵¹ However, the reaction of *rac*-1 with Me₂Mg in Et₂O, followed by treatment with dioxane to form insoluble Mg salts, gave pure *rac*-7 in 90% yield.^{3k}

The reaction of rac-4 with 5 equiv of AlMe₃ in toluene results in clean alkylation of the metallocene to give rac-7 and Al₂-Me₅(NMe₂) as the main aluminum product (Scheme 3). The aluminum co-products are easily removed by washing the crude product with pentane, and pure rac-7 is obtained in 90% yield. This efficient alkylation reaction, coupled with the efficient synthesis developed for rac-4, provides a very attractive route to rac-7.

(iv) Use of *rac*-4 as an Olefin Polymerization Catalyst Precursor. As described in detail elsewhere, *rac*-4 is activated for propylene polymerization by treatment with MAO (Al/Zr $\approx 1000/1$).³⁰ The resulting catalyst displays similar isoselectivity but lower activity versus the standard *rac*-1/MAO catalyst. However, initial alkylation of *rac*-4 with AlR₃ reagents followed by activation with MAO or cationic activators ([Ph₃C][B(C₆F₅)₄] or [R₃NH][B(C₆F₅)₄]) yields catalysts with performance competitive with that of *rac*-1/MAO.

Advantages of Amine Elimination. Compared with the current syntheses of rac-(EBI)ZrCl₂ via salt elimination reactions, the amine elimination route described here has several advantages: (i) generation of (EBI)^{2–} reagent is not required, (ii) high dilution and simultaneous addition procedures are not required, (iii) no acid wash steps, Soxhlet extractions, or recrystallizations are needed, and (iv) pure rac-(EBI)ZrCl₂ is obtained in good yield from ZrCl₄ in a one-pot procedure.

Conclusion

Amine elimination offers an efficient approach to the synthesis of rac-(EBI)ZrX₂ complexes (Scheme 4). The amide starting material $Zr(NMe_2)_4$ (2) is obtained in high yield from the reaction of ZrCl₄ and LiNMe₂ in toluene and is efficiently converted to rac-(EBI)Zr(NMe₂)₂ (rac-4) by the amine elimination reaction with (EBI) H_2 (3). The rac-4/meso-4 product ratio can be controlled by adjusting the reaction conditions; a 1/1 rac-4/meso-4 ratio is the kinetic product, rac-4 is the thermodynamic product, and the meso-4 to rac-4 isomerization is catalyzed by the NMe₂H co-product. The reversibility of the amine elimination is the key to the stereoselectivity of the reaction. rac-4 can be converted to rac-(EBI)-ZrCl₂ (rac-1) by protonolysis or amide-halide exchange reactions, and the syntheses of 2, rac-4, and rac-1 can be combined in a simple and reproducible one-pot synthesis of rac-1. Alkylation of rac-4 using AlMe₃ provides an efficient route

to *rac*-(EBI)ZrMe₂ (*rac*-7). This work establishes that amine elimination offers an attractive route to chiral *ansa*-zirconocenes. This approach is quite versatile, as will be described in subsequent contributions.^{32–34}

Experimental Section

General Procedures. All reactions were performed under a purified N₂ atmosphere using standard glovebox and Schlenk techniques. Solvents were distilled from Na/benzophenone, except for toluene (Na) and chlorinated solvents (CaH₂), and stored under N₂. ZrCl₄ was purchased from Aldrich, CERAC Inc. or GFS Chemicals and sublimed under vacuum before use. LiNMe₂ was obtained from Aldrich and washed with Et₂O and dried under vacuum before use. (EBI)H₂ (1,2-bis(3-indenyl)ethane, **3**) was prepared by the literature procedure⁶ or purchased from Aldrich. NMR spectra were recorded on a Bruker AMX-360 spectrometer, in Teflon-valved or flame-sealed tubes, at ambient probe temperature (298 K) unless otherwise indicated. ¹H and ¹³C chemical shifts are reported versus Me₄Si and were determined by reference to the residual ¹H and ¹³C solvent peaks. Elemental analyses were performed by E + R Microanalytical Laboratory (Corona, NY) or Desert Analytics Laboratory (Tucson, AZ).

Improved Synthesis of Zr(NMe₂)₄ (2). Solid ZrCl₄ (12 g, 52 mmol) was added in several portions over 2 h to a suspension of LiNMe₂ (11 g, 220 mmol) in toluene (150 mL) at 23 °C. The reaction mixture was stirred for 18 h at 23 °C. The solvent was removed under reduced pressure leaving an off-white solid, from which pure Zr(NMe₂)₄ (2) was obtained by sublimation at 80 °C/0.05 mmHg, in 83% yield (12 g). The yield of this reaction is very dependent on the purity of the starting materials. For optimum yield the ZrCl₄ should be freshly sublimed and the LiNMe₂ should be washed with Et₂O and dried under vacuum before use. ¹H NMR (C₆D₆): δ 2.96 (s, 24 H, NMe₂).

rac-(EBI)Zr(NMe2)2 (rac-4). A Schlenk vessel was charged with Zr(NMe₂)₄ (1.0 g, 3.7 mmol), (EBI)H₂ (1,2-bis(3-indenyl)ethane, 0.96 g, 3.7 mmol), and toluene (20 mL). The reaction mixture was stirred and heated to 100 °C for 17 h, and NMe₂H was allowed to escape via an oil bubbler. An aliquot was removed and analyzed by ¹H NMR which showed that 4 was present in 90% yield in a rac/meso ratio of 13/1. The reaction mixture was filtered, concentrated under reduced pressure, and cooled to -20 °C. Filtration afforded pure rac-4 as orange/red crystals in 68% yield (1.1 g). Anal. Calcd for C24H28N2-Zr: C, 66.16; H, 6.48; N, 6.43. Found: C, 66.42; H, 6.40; N, 6.24. ¹H NMR (C₆D₆): δ 7.42 (d, J = 9 Hz, 2 H, indenyl), 7.40 (d, J = 9Hz, 2 H, indenyl), 6.93 (dd, J = 7 Hz, J = 9 Hz, 2 H, indenyl), 6.71 (dd, J = 7 Hz, J = 9 Hz, 2 H, indenyl), 6.35 (d, J = 3 Hz, 2 H, C₅ indenyl), 5.88 (d, J = 3 Hz, 2 H, C₅ indenyl), 3.31 (m, 2 H, CH₂), 3.10 (m, 2 H, CH₂), 2.53 (s, 12 H, NMe₂). ${}^{13}C{}^{1}H{}$ NMR (C₆D₆): δ 130.0 (C), 125.8 (CH), 123.3 (CH), 123.2 (CH), 121.3 (C) 120.7 (CH), 117.3 (C), 113.9 (CH), 100.6 (CH), 47.7 (NMe₂), 28.9 (CH₂CH₂).

meso-(EBI)Zr(NMe₂)₂ (*meso*-4). This species was characterized by ¹H NMR spectroscopy only. ¹H NMR (C₆D₆): δ 7.56 (d, J = 8Hz, 2 H, indenyl), 7.39 (d, J = 9 Hz, 2 H, indenyl), 6.88 (m, 2 H, indenyl), 6.70 (m, 2 H, indenyl), 6.41 (d, J = 3 Hz, 2 H, C₅ indenyl), 5.86 (d, J = 3 Hz, 2 H, C₅ indenyl), 3.50 (m, 2 H, CH₂), 2.99 (s, 6 H, NMe₂), 2.94 (m, 2 H, CH₂), 1.82 (s, 6 H, NMe₂).

 $(\mu - \eta^5, \eta^5 - \text{EBI}) \{ \text{Zr}(\text{NMe}_2)_3 \}_2$ (5). A solution of (EBI)H₂ (0.24 g, 0.93 mmol) in toluene (20 mL) was added dropwise at 23 °C to a solution of Zr(NMe₂)₄ (0.50 g, 1.9 mmol) in toluene (20 mL). The reaction mixture was stirred for 17 h at room temperature. The solvent was removed under reduced pressure affording an orange oil. The ¹H NMR spectrum of the oil showed that 5 was present in 75% yield in a rac/meso ratio of 1/1. Recrystallization from hexane afforded pure 5 in 19% yield (0.12 g) as a yellow crystalline solid in an isomeric ratio of 2/1. Anal. Calcd for C₃₂H₅₂N₆Zr₂: C, 54.65; H, 7.45; N, 11.95. Found: C, 54.86; H, 7.26; N, 11.76. Major isomer: ¹H NMR (C₆D₆): δ 7.59-7.45 (m, 4 H, indenyl), 6.96-6.88 (m, 4 H, indenyl), 6.36 (d, J = 3 Hz, 2 H, C₅ indenyl), 6.20 (d, J = 3 Hz, 2 H, C₅ indenyl), 3.39-3.21 (m, 4 H, CH₂CH₂), 2.80 (s, 36 H, NMe₂). ¹³C{¹H} NMR (C₆D₆): δ 126.3 (C), 125.2 (C), 123.1 (CH), 122.6 (CH), 122.1 (CH), 121.7 (CH), 116.4 (CH), 114.3 (C), 96.0 (CH), 44.1 (NMe2), 29.4 (CH2-CH₂). Minor isomer: ¹H NMR (C₆D₆): δ 7.59–7.45 (m, 4 H, indenyl), 6.96-6.88 (m, 4 H, indenyl), 6.26 (d, J = 3 Hz, 2 H, C₅ indenyl), 6.20

(d, J = 3 Hz, 2 H, C₅ indenyl), 3.43 (m, 2 H, CH₂), 3.17 (m, 2 H, CH₂), 2.79 (s, 36 H, NMe₂). ¹³C{¹H} NMR (C₆D₆): δ 126.5 (C), 125.0 (C), 123.1 (CH), 122.6 (CH), 122.2 (CH), 121.7 (CH), 116.9 (CH), 114.1 (C), 95.7 (CH), 44.1 (NMe₂), 29.2 (CH₂CH₂).

Characterization of $(\eta^5-C_9H_6CH_2CH_2C_9H_7)Zr(NMe_2)_3$ (6). A Teflon-valved NMR tube was charged with Zr(NMe₂)₄ (0.027 g, 0.10 mmol), (EBI)H₂ (3) (0.026 g, 0.10 mmol), and C_6D_6 (0.6 mL), maintained at 23 °C and monitored periodically by ¹H NMR. After 10 min, $(\eta^5-C_9H_6CH_2CH_2C_9H_7)Zr(NMe_2)_3$ (6, 33%) and $(\mu-\eta^5,\eta^5-EBI) {Zr(NMe_2)_3}_2$ (5, 2%) were formed. After 30 min all $Zr(NMe_2)_4$ was consumed and a mixture of 6, 5, and 3 was obtained, in a 2/1/1 ratio, along with NMe₂H. After 70 min the 6/5/3 ratio had not changed. Intermediate 6 was characterized by ¹H NMR spectroscopy. ¹H NMR (C₆D₆): δ 7.53 (d, J = 7 Hz, 1 H, η^{5} -C₉H₆), 7.47 (d, J = 8 Hz, 1 H, η^{5} -C₉H₆), 7.34 (d, J = 7 Hz, 1 H, C₉H₇), 7.32 (d, J = 7 Hz, 1 H, C_9H_7), 7.25 (pseudo t, J = 7 Hz, 1 H, C_9H_7), 7.15 (pseudo t, J = 7 Hz, 1 H, C₉H₇), 6.93 (m, 1 H, η^{5} -C₉H₆), 6.89 (m, 1 H, η^{5} -C₉H₆), 6.36 (d, J = 3 Hz, 1 H, η^{5} -C₉H₆), 6.21 (d, J = 3 Hz, 1 H, η^{5} -C₉H₆), 6.03 (br. t, J = 2 Hz, 1 H, C₉H₇), 3.4–3.1 (m, 4 H, CH₂CH₂), 3.07 (br. s, 2 H, C₉H₇), 2.78 (s, 18 H, NMe₂).

rac-(EBI)ZrCl₂ (*rac*-1) from *rac*-(EBI)Zr(NMe₂)₂. A solution of NMe₂H·HCl (0.093 g, 1.1 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a stirred solution of *rac*-4 (0.25 g, 0.57 mmol) in CH₂Cl₂ (20 mL) at -78 °C. The clear, yellow solution was stirred at 23 °C for 30 min. The solvent was removed under reduced pressure and the residue was washed with hexane and extracted with toluene. The solvent was removed under reduced pressure yielding pure *rac*-1 (92% isolated, 0.22 g) as a yellow solid. ¹H NMR (CD₂Cl₂): δ 7.68 (d, *J* = 9 Hz, 2 H, indenyl), 7.45 (d, *J* = 9 Hz, 2 H, indenyl), 7.31 (m, 2 H, indenyl), 7.20 (m, 2 H, indenyl), 6.54 (d, *J* = 3 Hz, 2 H, C₅ indenyl), 6.24 (d, *J* = 3 Hz, 2 H, C₅ indenyl), 3.74 (m, 4 H, CH₂CH₂).

"One-Pot" Synthesis of rac-(EBI)ZrCl2 (rac-1) from ZrCl4 Using NMe₂H·HCl as a Chlorinating Agent. Solid ZrCl₄ (0.93 g, 4.0 mmol) was added to a suspension of LiNMe₂ (0.82 g, 16 mmol) in toluene (40 mL) at room temperature. C₆Me₆ (0.16 g, 1.0 mmol) was added as an internal standard, to allow the reaction to be followed quantitatively by ¹H NMR. The reaction mixture was stirred for 20 h at 23 °C. An aliquot was removed and analyzed by ¹H NMR. The ¹H NMR spectrum showed that Zr(NMe2)4 was present in 80% yield (based on ZrCl₄). A toluene (20 mL) solution of (EBI)H₂ (0.98 g, 3.8 mmol) was added. The reaction mixture was stirred and heated to 100 °C for 22 h, and NMe2H was allowed to escape from the reaction vessel via an oil bubbler. An aliquot was removed and analyzed by ¹H NMR which showed that (EBI)Zr(NMe2)2 (4) was present in a rac/meso ratio of 12/1 in 80% yield (based on ZrCl₄). The reaction solution was filtered at 23 °C to remove LiCl, and the clear red filtrate was added to solid NMe₂H·HCl (0.55 g, 6.8 mmol). The reaction mixture was stirred at 23 °C. After 15 h, ¹H NMR analysis of an aliquot showed that the 90% of 4 had been consumed. After 40 h the reaction was complete, and the yellow solid that had slowly precipitated from the reaction solution was collected by filtration, washed with pentane (25 mL), and dried under vacuum. The yellow solid (1.04 g) was rac-(EBI)ZrCl2 (rac-1) contaminated with 5 mol % NMe2H·HCl, corresponding to an overall yield of rac-(EBI)ZrCl₂ of 59% based on ZrCl₄.

Reaction of *rac***-(EBI)Zr(NMe**₂)₂ **with Me**₃**SiCl in CD**₂**Cl**₂**.** Using a microsyringe, Me₃SiCl (15 μ L, 0.11 mmol) was added to a solution of *rac***-4** (0.025 g, 0.057 mmol) in CD₂Cl₂ in a Teflon-valved NMR tube. The tube was agitated to mix the contents, and the clear red/ orange solution turned bright yellow in seconds. The ¹H NMR spectrum showed complete conversion to *rac***-1** and Me₃SiNMe₂. The addition of excess Me₃SiCl (30 μ L, 0.22 mmol) had no effect, even after 3 days at room temperature. Me₃SiNMe₂: ¹H NMR (CD₂Cl₂): δ 2.42 (s, 6 H, NMe₂), 0.02 (s, 9 H, SiMe₃).

Reaction of *rac*-(**EBI**)**Zr**(**NMe**₂)₂ **with Me**₃**SiCl in C**₆**D**₆. Using a microsyringe, Me₃SiCl (15 μ L, 0.11 mmol) was added to a solution of *rac*-4 (0.025 g, 0.057 mmol) in C₆D₆ in a Teflon-valved NMR tube. When the tube was agitated to mix the contents, no color change was observed. Over 1 h at 23 °C, the color slowly changed from red/orange to bright yellow and a yellow solid began to precipitate from solution. The ¹H NMR spectrum after 1 h showed complete consumption of *rac*-4. The addition of excess Me₃SiCl (30 μ L, 0.22 mmol) had no effect. *rac*-1: ¹H NMR (C₆D₆): δ 7.27 (d, *J* = 9 Hz, 2 H, indenyl),

7.15 (d, J = 8 Hz, 2 H, indenyl), 7.09 (m, 2 H, indenyl), 6.91 (m, 2 H, indenyl), 6.46 (d, J = 3 Hz, 2 H, C₅ indenyl), 5.75 (d, J = 3 Hz, 2 H, C₅ indenyl), 2.96 (m, 4 H, CH₂CH₂). Me₃SiNMe₂: ¹H NMR (C₆D₆): δ 2.38 (s, 6 H, NMe₂), 0.05 (s, 9 H, SiMe₃).

"One-Pot" Synthesis of rac-(EBI)ZrCl₂ (rac-1) from ZrCl₄ Using Me₃SiCl as the Chlorinating Reagent. Solid ZrCl₄ (0.93 g, 4.0 mmol) was added to a suspension of LiNMe2 (0.82 g, 16 mmol) in toluene (40 mL) at 23 °C. C₆Me₆ (0.16 g, 1.0 mmol) was added as an internal standard. The reaction mixture was stirred for 16 h at 23 °C. An aliquot was removed and analyzed by ¹H NMR which showed that Zr(NMe₂)₄ was present in 85% yield (based on ZrCl₄). A toluene (20 mL) solution of (EBI)H2 (0.98 g, 3.8 mmol) was added. The reaction mixture was stirred and heated to 100 °C for 17 h, and NMe₂H was allowed to escape via an oil bubbler. An aliquot was removed and analyzed by ¹H NMR which showed that (EBI)Zr(NMe₂)₂ (4) was present in a rac/meso ratio of 11/1 in 80% yield (based on ZrCl₄). The reaction mixture was filtered at 23 °C to remove LiCl. A toluene (5 mL) solution of Me₃SiCl (2.17 g, 20 mmol) was added to the clear red filtrate at 23 °C. A yellow solid precipitated immediately. The mixture was stirred at 23 °C for 1 h and filtered. The yellow solid was washed with hexane (30 mL) and dried under vacuum. Yield = 1.1 g, 68% based on ZrCl₄, pure rac-1. When this procedure was repeated on a 25-mmol scale, pure rac-1 was isolated in 79% yield (8.3 g).

rac-(EBI)ZrMe₂ (*rac*-7) from *rac*-(EBI)Zr(NMe₂)₂. A toluene (40 mL) solution of *rac*-4 (0.71 g, 1.6 mmol) was cooled to -10 °C, and a hexane (10 mL) solution of AlMe₃ (0.58 g, 8.0 mmol, 5 equiv) was added over 15 min. During the addition the color of the reaction solution changed from red/orange to yellow. The solution was stirred at 23 °C for 2 h, the solvent was removed under reduced pressure, and the solid was dried under vacuum. The solid was washed with pentane and dried under vacuum. Yield 0.56 g, 90%, pure *rac*-7. ¹H NMR (C₆D₆): δ 7.31 (d, J = 8 Hz, 2 H, indenyl), 7.08 (d, J = 9 Hz, 2 H, indenyl), 7.06 (m, 2 H, indenyl), 6.89 (m, 2 H, indenyl), 6.42 (d, J = 3 Hz, 2 H, C₅ indenyl), 5.65 (d, J = 3 Hz, 2 H, C₅ indenyl), 2.81 (m, 2 H, CH₂), 2.67 (m, 2 H, CH₂), -0.97 (s, 6 H, ZrMe₂).

X-ray Diffraction Study of rac-(EBI)Zr(NMe₂)₂ (rac-4). The structure of rac-4 was determined by J.L.P. at WVU. Intensity data were measured with graphite-monochromated Mo K α radiation (λ = 0.71073 Å) and fixed ω scans of 4 deg/min (scan width $\pm 0.60^{\circ}$). During data collection it was evident that the line widths of many of the diffraction peaks were broad, thereby indicating that the crystal was of marginal quality. Background counts were measured at the beginning and at the end of each scan with the crystal and counter kept stationary. The intensities of three standard reflections were measured periodically during data collection. The data were corrected for Lorentz-polarization effects and an empirical absorption correction based upon the PSI scans ($\chi \approx \pm 90^\circ$) was applied. The structure solution was provided by the first E-map calculated with the phase assignments determined by the direct methods structure solution program available in SHELXTL-IRIS operating on a Silicon Graphics Iris Indigo workstation. The coordinates for all the remaining nonhydrogen atoms of the zirconium complex were located by Fourier methods. The hydrogen atom positions were idealized with isotropic temperature factors set at 1.2 times that of the adjacent carbon. The positions of the methyl hydrogens were optimized by a rigid rotating group refinement with idealized tetrahedral angles. As the structural refinement progressed, it became apparent that the crystal lattice contained a molecule of toluene disordered around a crystallographic center of inversion. In order to model this disorder it was necessary to refine the six carbons (C(25) through C(30)) of the phenyl ring as a rigid group and restrain the C(25)–C(31) distance to 1.54 ± 0.01 Å and the two nonbonded C(26)-C(31) and C(30)-C(31) distances to 2.54 ± 0.01 Å. In addition, due to the large thermal displacements associated with C(19) and C(20) of the ethylene bridge, the C(19)-C(20) bond length of the ethylene bridge was restrained to 1.54 ± 0.01 Å. Full-matrix least-squares refinement with SHELXL-93,⁵² based upon the minimization of $\sum w_i |F_o^2 - F_c^2|^2$ with weighting given by the expression $w_i^{-1} = [\sigma^2(F_0^2) + (0.0809P)^2 + 19.47P]$ where P = (Max-

⁽⁵²⁾ SHELXL-93 is a FORTRAN-77 program (Professor G. Sheldrick, Institut fur Anorganische Chemie, University of Gottingen, D-37077, Gottingen, Germany) for single-crystal X-ray structural analyses.

Synthesis and Reactivity of rac-(EBI)Zr(NMe₂)₂

 $(F_o^2, 0) + 2F_c^2/3$, converged to give final discrepancy indices⁵³ of *R*1 = 0.0892, *wR*2 = 0.2091, and GOF = 1.067 for 2699 reflections with $I > 2 \sigma(I)$.

Acknowledgment. This research was supported by the National Science Foundation (CHE-9413022; R.F.J.). The authors wish to acknowledge the contributions made to this project by Dr. Stephan Rodewald (initial synthesis of **4**), Dr. II

J. Am. Chem. Soc., Vol. 118, No. 34, 1996 8033

Kim (in situ methylation of *rac*-4), and Samuel Dagorne (preparative scale methylation of *rac*-4).

Supporting Information Available: X-ray structural analysis of rac-[C₂H₄(C₉H₆)₂]Zr(NMe₂)₂·¹/₂C₇H₈, tables of summary of crystallographic data, atomic coordinates and equivalent isotropic displacement parameters, interatomic distances and angles, anisotropic displacement parameters, and hydrogen coordinates and isotropic displacement parameters for rac-4, and alternate views of rac-4 (10 pages). See any current masthead page for ordering and Internet access instructions.

JA9604830

⁽⁵³⁾ The discrepancy indices were calculated from the expressions $R1 = \sum ||F_o| - |F_c||/\sum |F_o|$ and $wR2 = [\sum (w_i(F_o^2 - F_c^{-2})^2)/\sum (w_i(F_o^2)^2)]^{1/2}$ and the standard deviation of an observation of unit weight (GOF) is equal to $[\sum (w_i(F_o^2 - F_c^{-2})^2)/(n - p)]^{1/2}$, where *n* is the number of reflections and *p* is the number of parameters varied during the last refinement cycle.